Related literature. The solid solution is isostructural with $\alpha-\mathrm{BaB}_{2} \mathrm{O}_{4}$ (Mighell, Perloff \& Block, 1966) and its structure is stable down to room temperature (Block, Perloff \& Weir, 1964). Various other compounds $M \mathrm{Ba}_{2}\left[\mathrm{~B}_{3} \mathrm{O}_{6}\right]_{2}$ where $M=\mathrm{Ca}, \mathrm{Cd}, \mathrm{Co}, \mathrm{Ni}$ and Mg have also been found and their structures (Liebertz \& Fröhlich, 1984) also shown to be more closely related to $\alpha-\mathrm{BaB}_{2} \mathrm{O}_{4}$ than to $\beta-\mathrm{BaB}_{2} \mathrm{O}_{4}$. The crystal structure of the solid solution of $\mathrm{Sr}_{x} \mathrm{Ba}_{3-x}\left(\mathrm{~B}_{3} \mathrm{O}_{6}\right)_{2}(x=1.16)$ reported here enables us to define a similar relationship for $M \mathrm{Ba}_{2}\left(\mathrm{~B}_{3} \mathrm{O}_{6}\right)_{2}$ where M is an alkaline-earth metal.

This work was financially supported by Fuzhou Research Laboratory of Structural Chemistry, Chinese Academy of Sciences.

References

Block, S., Perloff, A. \& Weir, C. E. (1964). Acta Cryst. 17, 314-315.
Frenz, B. A. (1978). The Enraf-Nonius CAD-4 SDP/VAX - A Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Solution. In Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld \& G. C. Bassi, pp. 64-71. Holland: Delft Univ. Press.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5183. Oak Ridge National Laboratory, Tennessee, USA.
Liebertz, J. \& Fröhlich, R. (1984). Z. Kristallogr. 168, 293297.

Mighell, A. D., Perloff, A. \& Block, S. (1966). Acta Cryst. 20, 819-823.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158166.

Wang, G., Huang, Q. \& Liang, J. (1984). Acta Chem. Sin. 42, 503-508.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.

Acta Cryst. (1992). C48, 541-542

New Refinement of LiCdPO_{4}

By L. Elammari and B. Elouadi
Applied Solid State Chemistry Laboratory, Faculty of Science, Charia Ibn Batota, Rabat, Morocco
and W. Depmeier*
Institut für Kristallographie, Universität Karlsruhe, Kaiserstr. 12, Postfach 6980, 7500 Karlsruhe, Germany

(Received 5 March 1990; accepted 5 July 1991)

Abstract

Cadmium lithium phosphate, $M_{r}=214.31$, orthorhombic, Pnma, but previously reported as $P n a 2_{1}$ by the present authors [Elammari, Elouadi \& Depmeier (1988). Acta Cryst. C44, 1357-1359], $a=$ 10.724 (4), $\quad b=6.288(1), \quad c=4.804$ (1) $\AA, \quad V=$ 323.9 (1) $\AA^{3}, Z=4, D_{x}=4.40 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo $K \alpha)=$ $0.7107 \AA, \mu=70.4 \mathrm{~cm}^{-1}, F(000)=392, T=298 \mathrm{~K}$, $R=0.0207$ for 759 independent reflections. The revised structure is less distorted but is otherwise comparable, with discrete PO_{4} tetrahedra linked by distorted $\mathrm{CdO}_{6}\left(c\right.$ site symmetry m) and $\mathrm{LiO}_{6}(b$ site symmetry 1) octahedra as described previously.

Experimental. X-ray diffraction data were collected under the conditions reported in Table 1. The refinement of the structure in both space groups, Pna2, and Pnma, gives comparable indicators in each $\left(R=0.0182\right.$ and $w R=0.0172$ for $P n a 2_{1} ; R=$ 0.0207 and $w R=0.0214$ for Pnma). Scattering fac-

^[* Present address: Institut für Mineralogie und Kristallographie der Technischen Universität Berlin, Ernst-Reuter-Platz 1, D-1000 Berlin 12, Germany.]

tors were taken from International Tables for X-ray Crystallography (1974, Vol. IV).

Related literature. New results of second-harmonic generation (SHG) tests performed with very sensitive equipment (Dougherty \& Kurtz, 1976) on as-grown crystals suggest the centrosymmetric space group Pnma, since no SHG signal was detected (Williams, 1989). No significant difference is observed between the values of atomic coordinates and interatomic distances given in our former study (Elammari, Elouadi \& Depmeier, 1988) and those shown in Tables $2 \dagger$ and 3. It is however surprising that the SHG test performed earlier gave a positive result. This was probably an artefact not related to LiCdPO_{4}.

[^1]Table 1. Details of data collection and structure refinement
Syntex $R 3$
Graphite plate
Mo $K \alpha, 0.7107$
$25,5-30$

Yes
$0.139-0.084$
$\omega / 2 \theta$
1.2
$2-35(-18 \leq h \leq 18,-8 \leq k \leq 8,-11 \leq$
$\quad l \leq 11)$
5706
1411 in $P n a 2_{1}$ and 759 in Pnma
64 in Pna2 ${ }_{1}$ and 41 in Pnma
0.126
$w=\left[\sigma^{2}(F)+0.0002 F^{2}\right]$
0.047
$S H E L X T L$ (Sheldrick, 1983$)$
$0.0182(0.0179)$ in Pna2
$0.0207(0.0214)$ in Pnma
0.004
$2.13,-0.62$

Table 2. Atom coordinates $\left(\times 10^{4}\right)$ and temperature factors $\left(\AA^{2} \times 10^{3}\right)($ e.s.d.'s are in parentheses and refer to the final digits quoted)
Equivalent isotropic U_{eq} defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.

	x	y		U_{eq}
Cd	$2158(1)$	2500	$450(1)$	$11(1)$
\mathbf{P}	$9108(1)$	2500	$-1048(1)$	$9(1)$
$\mathrm{O}(1)$	$9064(2)$	2500	$2131(4)$	$14(1)$
$\mathrm{O}(2)$	$10443(2)$	2500	$-2263(4)$	$13(1)$
$\mathrm{O}(3)$	$8443(1)$	$4455(2)$	$-2355(3)$	$13(1)$
Li	0	0	5000	$28(2)$

We are greatly indebted to Professor Dr H . Wondratschek who allowed the data collection in his Laboratory at Karlsruhe, to Dr I. D. Williams who performed the second-harmonic generation tests in Professor S. K. Kurtz's Laboratory and also to Professor S. C. Abrahams for fruitful discussions

Table 3. Interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ in the LiCdPO_{4} structure

Symmetry code: (i) $x, 0.5-y, z$; (ii) $-x,-y,-z$; (iii) $1-x, y, z$; (iv) $1-x, y-0.5,-z$; (v) $x-1,0.5-y, 1+z$; (vi) $x-1, y$, $-(0.5+z)$; (vii) $x-0.5,0.5-y,-(0.5+z)$.

* For reading the values of $\mathrm{O}-\mathrm{Li}-\mathrm{O}$ angles the following rule should be used: the notation $\mathrm{O}(A, B, C)-\mathrm{Li}-\mathrm{O}\left(A^{\prime}, B^{\prime}, C^{\prime}\right)$ means that the angles concerned are $\mathrm{O}(A)-\mathrm{Li}-\mathrm{O}\left(A^{\prime}\right), \mathrm{O}(B)-\mathrm{Li}-\mathrm{O}\left(B^{\prime}\right)$ and $\mathrm{O}(C)-\mathrm{Li}-\mathrm{O}\left(C^{\prime}\right)$.
and particularly for recommending us to continue the refinement in space group Pnma.

References

Dougherty, J. P. \& Kurtz, S. K. (1976). J. Appl. Cryst. 9, 145-158.
Elammari, L., Elouadi, B. \& Depmeier, W. (1988). Acta Cryst. C44, 1357-1359.
Sheldrick, G. M. (1983). SHELXTL. Program for crystal structure determination. Univ. of Göttingen, Germany.
Williams, I. D. (1989). Private communication.

Acta Cryst. (1992). C48, 542-543

Structure of 1,3-Propanediammonium Tetrachlorocobaltate(II)

By Guo Ning, Lin Yong-Hua, Zeng Guang-Fu and Xi Shi-Quan
Changchun Institute of Applied Chemistry, Academia Sinica, 130022 Changchun, People's Republic of China

(Received 3 February 1991; accepted 18 July 1991)

Abstract

CoCl}_{4}\left(\mathrm{C}_{3} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right], \quad M_{r}=276.87\), monoclinic, $P 2_{1} / n, \quad a=10.703$ (2), $\quad b=10.653(1), \quad c=$ 10.852 (2) $\AA, \beta=118.46(1)^{\circ}, V=1087.8 \AA^{3}, Z=4$, $D_{x}=1.69 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=0.71073 \AA, \quad \mu=$ $22.60 \mathrm{~cm}^{-1}, F(000)=556, T=298 \mathrm{~K}$, final $R=0.059$ for 1068 unique reflections $[I>3 \sigma(I)]$. The $\mathrm{Co}^{\text {II }}$ ion

0108-2701/92/030542-02\$03.00
is coordinated by four Cl atoms in a tetrahedral geometry. The paraffinic chains which bridge the tetrahedra have a nearly planar zigzag configuration.

Experimental. The blue plate-shaped crystals of $\left[\mathrm{CoCl}_{4}\left(\mathrm{C}_{3} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right]$ were grown at room temperature © 1992 International Union of Crystallography

[^1]: \dagger Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54492 (7 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.
 (C) 1992 International Union of Crystallography

